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a b s t r a c t

Burn severity is an important parameter in post-fire management. It incorporates both the direct fire
impact (vegetation depletion) and ecosystem responses (vegetation regeneration). From a remote sensing
perspective, burn severity is traditionally estimated using Landsat’s differenced normalized burn ratio
(dNBR). In this case study of the large 2007 Peloponnese (Greece) wildfires, Landsat dNBR estimates
correlated reasonably well with Geo composite burn index (GeoCBI) field data of severity (R2 = 0.56).
The usage of Landsat imagery is, however, restricted by cloud cover and image-to-image normalization
constraints. Therefore a multi-temporal burn severity approach based on coarse spatial, high temporal
resolution moderate resolution imaging spectroradiometer (MODIS) imagery is presented in this study.
The multi-temporal dNBR (dNBRMT) is defined as the 1-year integrated difference between burned pixels
and their unique control pixels. These control pixels were selected based on time series similarity and
spatial context and reflect how burned pixels would have behaved in the case no fire had occurred.
Linear regression between downsampled Landsat dNBR and dNBRMT estimates resulted in a moderate-

2
high coefficient of determination R = 0.54. dNBRMT estimates are indicative for the change in vegetation
productivity due to the fire. This change is considerably higher for forests than for more sparsely vegetated
areas like shrub lands. Although Landsat dNBR is superior for spatial detail, MODIS-derived dNBRMT

estimates present a valuable alternative for burn severity mapping at continental to global scale without
image availability constraints. This is beneficial to compare trends in burn severity across regions and
time. Moreover, thanks to MODIS’s repeated temporal sampling, the dNBRMT accounts for both first- and

second-order fire effects.

. Introduction

Biomass burning is a major disturbance in almost all terres-
rial ecosystems (Pausas, 2004; Riano et al., 2007). At landscape
evel, wildland fires partially or completely remove the vege-
ation layer and affect post-fire vegetation composition (Epting
nd Verbyla, 2005). The fire-induced vegetation depletion causes
brupt changes in carbon, energy and water fluxes at local scale
Amiro et al., 2006), thereby influencing species richness, habi-
ats and community composition (Capitaino and Carcaillet, 2008).
ccurate estimates of post-fire effects are therefore of paramount
mportance. To name these post-fire effects the terms fire severity
nd burn severity are often interchangeably used (Keeley, 2009)
escribing the amount of damage (Chafer, 2008), the physical,
hemical and biological changes (Lee et al., 2008) or the degree

∗ Corresponding author. Tel.: +32 9 2644646; fax: +32 9 2644985.
E-mail address: sander.veraverbeke@ugent.be (S. Veraverbeke).
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oi:10.1016/j.jag.2010.06.006
© 2010 Elsevier B.V. All rights reserved.

of alteration (Eidenshink et al., 2007) that fire causes to an ecosys-
tem. Some authors, however, suggest a clear distinction between
both terms by considering the fire disturbance continuum (Jain
et al., 2004), which addresses three different temporal fire effects
phases: before, during and after the fire. In this context, fire sever-
ity quantifies the short-term fire effects in the immediate post-fire
environment whereas burn severity quantifies both the short- and
long-term impact as it includes response processes (e.g. resprout-
ing, delayed mortality; Lentile et al., 2006; Key, 2006). Fig. 1
represents a summary of post-fire effects terminology.

In remote sensing studies burn severity is traditionally esti-
mated using Landsat imagery (Key and Benson, 2005; French et
al., 2008). A popular approach, partly because of its conceptual
simplicity, can be found in rationing band reflectance data. In this

respect the normalized burn ratio (NBR) has become accepted as
the standard spectral index to assess burn severity (Lopez-Garcia
and Caselles, 1991; Key and Benson, 2005; French et al., 2008;
Veraverbeke et al., in press-a). The NBR relates to vegetation mois-
ture content by combining the near infrared (NIR) and mid infrared

dx.doi.org/10.1016/j.jag.2010.06.006
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
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Fig. 2. Pre-fire land cover types of the burned areas (Veraverbeke et al., in press-a).
ig. 1. Schematic representation of post-fire effects terminology (Veraverbeke et
l., in press-a).

MIR) spectral regions. Generally, pre- and post-fire NBR images are
i-temporally differenced, resulting in the differenced NBR (dNBR).

The dNBR method relies on Landsat imagery and thus depends
n image availability, which is limited to infrequent images over
mall areas due to Landsat’s 16-day revisiting cycle and cloud cover
Ju and Roy, 2008). Bi-temporal studies are even more hampered
s they require an effective image-to-image normalization (Coppin
t al., 2004) including the removal of phenological, atmospheric
nd bi-directional reflectance distribution function (BRDF) effects
Verbyla et al., 2008; Veraverbeke et al., 2010). As a result Landsat-
ased burn severity studies have proven to be valuable for obtaining
etailed information over specific fires, however, the magnitude of
he observed dNBR change heavily depends on assessment timing
Key, 2006; Veraverbeke et al., in press-b). This temporal dissimilar-
ty limits the comparison between bi-temporal dNBR assessments
f different fires (Eidenshink et al., 2007; Verbyla et al., 2008), espe-
ially when a comparison between different ecoregions is required
Eidenshink et al., 2007; French et al., 2008). The use of high tem-
oral, coarse spatial resolution data possibly provides a sound
lternative to Landsat dNBR estimates. In addition, their repeated
emporal sampling allows quantifying both the direct fire impact
nd regeneration processes. To date few studies have implemented
oarse resolution time series to assess burn severity. In this context
t is worth mentioning the effort of Lhermitte et al. (in review), who
llustrated the potential of time series data to account for inter- and
ntra-annual post-fire vegetation dynamics. In their method each
urned pixel is compared with an unburned control pixel. These
ontrol pixels were selected based on pre-fire time series similarity
nd spatial context.

The aim of this study is to present a multi-temporal dNBR
dNBRMT) burn severity assessment as an alternative for traditional
andsat dNBR mapping. The method incorporates both the direct
re impact and vegetation regeneration (Lentile et al., 2006). Mod-
rate resolution imaging spectroradiometer (MODIS) time series
re used over the large 2007 Peloponnese (Greece) wildfires.
NBRMT estimates are compared with Landsat and field data.

. Data and study area

.1. Study area
The study area is situated at the Peloponnese peninsula, in
outhern Greece (36◦30′–38◦30′N, 21◦–23◦E) (see Fig. 2). The
opography is rugged with elevations ranging between 0 and
404 m above sea level. The climate is typically Mediterranean
The locations of the example pixels shown in Fig. 7 are also indicated (A–H).

with hot, dry summers and mild, wet winters. For the Kala-
mata meteorological station (37◦4′N, 22◦1′E) the average annual
temperature is 17.8 ◦C and the mean annual precipitation equals
780 mm.

After a severe drought period several large wildfires of unknown
cause have struck the area in the 2007 summer. The fires were the
worst natural disaster of the last decades in Greece, both in terms
of human losses and the extent of the burned area. The fires con-
sumed more than 175 000 ha, which consisted of 57% shrub land,
21% coniferous forest, 20% olive groves and 2% broadleaved forest
(Veraverbeke et al., in press-b).

2.2. Field data

150 Geo composite burn index (GeoCBI) plots were sampled 1
year post-fire, in September 2008. The GeoCBI is a modification of
the composite burn index (CBI) (De Santis and Chuvieco, 2009). It
is an operational tool used in conjunction with the Landsat dNBR
approach to assess burn severity in the field (Key and Benson, 2005).
The GeoCBI divides the ecosystem into five different strata, one
for the substrates and four vegetation layers. These strata are: (i)
substrates, (ii) herbs, low shrubs and trees less than 1 m, (iii) tall
shrubs and trees of 1–5 m, (iv) intermediate trees of 5–20 m and
(v) big trees higher than 20 m. In the field form, 20 different factors
can be rated (e.g. soil and rock cover/color change, % LAI change,
char height) but only those factors present and reliably rateable,
are considered. The rates are given on a continuous scale between
zero and three and the resulting factor ratings are averaged per
stratum. Based on these stratum averages, the GeoCBI is calculated
in proportion to their corresponding fraction of cover, resulting in
a weighted average between zero and three that expresses burn

severity. As the field data were collected 1 year post-fire, it is an
extended assessment. Additional information on the field data can
be found in Veraverbeke et al. (in press-b).
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dissimilarity criterion D was used:

D =

√∑N
t=1(NBRf

t − NBRx
t )

2

N
(5)
4 S. Veraverbeke et al. / International Journal of Applie

.3. Landsat data

For the traditional Landsat dNBR assessment two anniversary
ate Thematic Mapper (TM) images (path/row 184/34) were used
23/07/2006 and 13/08/2008). In correspondence with the timing
f the field sampling, the post-fire image was acquired 1 year post-
re. The images were acquired in the summer, minimizing effects of
egetation phenology and differing solar zenith angles. The images
ere subjected to geometric, radiometric, atmospheric and topo-

raphic correction.
The 2008 image was geometrically corrected using 34 ground

ontrol points (GCPs), recorded in the field with a Garmin eTrex
ista GPS (15 m error in x and y (Garmin, 2005)). The resulting root
ean squared error (RMSE) was lower than 0.5 pixels. The 2006

nd 2008 images were co-registered within 0.5 pixels accuracy.
he images were registered in UTM (zone 34S), with the World
eodetic System 84 (WGS-84) as geodetic datum.

Raw digital numbers (DNs) were scaled to at-sensor radiance
alues (Ls) (Chander et al., 2007). The radiance to reflectance con-
ersion was performed using the COST method (Chavez, 1996):

a = �(Ls − Ld)

(E0/d2)(cos �z)2
(1)

here �a is the atmospherically corrected reflectance at the sur-
ace; Ls is the at-sensor radiance (W m−2 sr−1); Ld is the path
adiance (W m−2 sr−1); E0 is the solar spectral irradiance (W m−2); d
s the earth–sun distance (astronomical units); �z is the solar zenith
ngle. The COST method is a dark object subtraction (DOS) approach
hat assumes 1% surface reflectance for dark objects (e.g. deep
ater). After applying the COST atmospheric correction, pseudo-

nvariant features (PIFs) such as deep water and bare soil pixels,
ere examined in the images. No further relative normalization

etween the images was required.
It was necessary to correct for different illumination effects due

o topography as the common assumption that shading effects are
emoved in ratio-based analyses does not necessarily hold true
Verbyla et al., 2008; Veraverbeke et al., 2010). This was done based
n the modified C correction method (Veraverbeke et al., 2010), a
odification of the original C correction approach (Teillet et al.,

982), using a DEM and knowledge of the solar zenith and azimuth
ngle at the moment of image acquisition. Topographical slope
nd aspect data were derived from 90 m shuttle radar topographic
ission (SRTM) elevation data (Jarvis et al., 2006) resampled and

o-registered with the Landsat images. The illumination is modeled
s:

os�i = cos �p cos �z + sin �p sin �z cos(�a − �0) (2)

here � i is the incident angle (angle between the normal to the
round and the sun rays); �p is the slope angle; �z is the solar zenith
ngle; �a is the solar azimuth angle; �0 is the aspect angle. Then
errain corrected reflectance �t is defined as:

t = �a

(
1 + ck

cos�i + ck

)
(3)

here ck is a band specific parameter ck = bk/mk where bk and mk
re the respective intercept and slope of the regression equation
a = bk + mk cos � i.

Finally, by inputting the NIR (TM4: centered at 830 nm) and MIR

TM7: centered at 2215 nm) bands NBR and dNBR images were
enerated:

BR = NIR − MIR
NIR + MIR

, dNBR = NBRpre − NBRpost (4)
h Observation and Geoinformation 13 (2011) 52–58

2.4. MODIS data

Level 2 daily Terra MODIS surface reflectance (500 m) tiles
(MOD09GA) including associated quality assurance (QA) lay-
ers were acquired from the national aeronautics and space
administration (NASA) warehouse inventory search tool
(WIST) (http://wist.echo.nasa.gov) for the period 01/01/2006
till 31/12/2008. These products contain an estimate of the surface
reflectance for seven optical bands as it would have been mea-
sured at ground level as if there were no atmospheric scattering
or absorption (Vermote et al., 2002). The data preprocessing steps
included subsetting, reprojecting, compositing, creating contin-
uous time series and indexing. The study area was clipped and
the NIR (centered at 858 nm), MIR (centered at 2130 nm) and QA
layers were reprojected into UTM with WGS 84 as geodetic datum.
Subsequently, the daily NIR, MIR and QA data were converted in
8-day composites using the minimum NIR criterion to minimize
cloud contamination and off-nadir viewing effects (Holben, 1986).
The minimum NIR criterion has proven to allow a more accu-
rate discrimination between burned and unburned pixels than
traditional maximum value composites (MVCs) (Chuvieco et al.,
2005). After compositing bad QA observations were replaced by
a Savitzky–Golay filter as implemented in the TIMESAT software
(Jonsson and Eklundh, 2004). The TIMESAT program allows the
inclusion of a preprocessing mask that determines the uncertainty
of data values. Cloud-affected observations were identified using
the internal cloud and cloud-adjacency algorithm flags of the QA
layer. These flags consist of binary layers which permit to assign
a zero weight value to cloudy and cloud-adjacent observations.
Consequently, these data do not influence the filter procedure.
Only the values of the masked observations were replaced to retain
as much as possible the original NIR and MIR reflectance values.
Finally, the NBR index was calculated as using Eq. (4).

2.5. Control pixel data

Control pixel data were retrieved making use of pre-fire time
series similarity and spatial context (Lhermitte et al., 2010) as
implemented in Veraverbeke et al. (in press-b). The control pixel
selection procedure assigns a unique control pixel to each burned
pixel. This is done based on time series similarity between a burned
pixel and its closest unburned neighbor pixels during a pre-fire
period. To quantify dissimilarity the averaged Euclidian distance
Fig. 3. Principle of the multi-temporal dNBR (dNBRMT). The dNBRMT represents the
averaged integrated difference between the 1-year post-fire NBR time series of the
control and focal pixels, as shown in the figure by the shaded area.

http://wist.echo.nasa.gov/
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here NBRf
t and NBRx

t are the respective burned focal and unburned
andidate control pixel time series, while N is the number of obser-
ations in pre-fire year (N = 46). The Euclidian distance metric has

n intuitive appeal: it quantifies the straight line inter-point dis-
ance in a multi-temporal space as distance measure. As a result,
t is robust for both data space translations and rotations. Conse-
uently, it is a very useful metric to assess inter-pixel differences in
ime series (Lhermitte et al., 2010). In this approach the averaged

ig. 4. MODIS dNBRMT map (A), subset MODIS dNBRMT map of the blue rectangle in (A) (B
D). The locations of the example pixels shown in Fig. 7 are also indicated in (A). (For inte
he web version of the article.)
h Observation and Geoinformation 13 (2011) 52–58 55

time series from the four most similar out of eight candidate pixels
defines the control pixel time series. This setting accounts for both
a beneficial averaging effect and the advantage of spatial proximity

(Veraverbeke et al., in press-b). The resulting control pixels reflect
the vegetation dynamics of each burned pixel in case that there
would not have occurred a fire. Additional information on the con-
trol plot selection procedure can be found in Lhermitte et al. (2010)
and Veraverbeke et al. (in press-b).

), Landsat dNBR map (C) and subset Landsat dNBR map of the blue rectangle in (C)
rpretation of the references to color in this figure legend, the reader is referred to
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ig. 5. Scatter plot and regression line between Landsat dNBR and GeoCBI (A) and
etween MODIS dNBRMT and Landsat dNBT (B) (n = 150, p < 0.001). The vertical bars

n B indicate the standard deviation of Landsat pixels within one MODIS pixel.

. Methodology

Burn severity incorporates both short- and long-term post-fire
ffects on the environment (Lentile et al., 2006). Consequently,
urn severity is a combination of immediate fire impact and the
cosystem’s ability to regenerate. Based on these characteristics,
e propose a multi-temporal dNBR (dNBRMT) that integrates the
ifference between the NBR values of a burned pixel and its corre-
ponding control pixel over time. Doing so the dNBRMT is defined
s:

NBRMT =
∑N

t=1(NBRf
t − NBRc

t )

N
(6)

here NBRf
t and NBRc

t are the respective burned focal and unburned
ontrol pixel observations, while N is the number of post-fire obser-
ations included in the study (here N = 46 for 1 year) and t = 1 is
he first post-fire observation. Fig. 3 illustrates the principle of the

NBRMT. Dividing by the number of post-fire observations N nor-
alizes the dNBRMT data to the same range as bi-temporal dNBR

ssessments. dNBRMT estimates will show large positive values for
igh burn severity. The application of an integral has been used to
haracterize vegetation productivity (Reed et al., 1994; Heumann

Fig. 6. Mean dNBRMT and standard
h Observation and Geoinformation 13 (2011) 52–58

et al., 2007). The integrated change between NBR values of control
and burned pixels is therefore indicative for the change in vegeta-
tion productivity caused by the fire. To evaluate the performance of
the multi-temporal approach comparison is made with a traditional
Landsat TM dNBR assessment and GeoCBI field data.

4. Results

Fig. 4A shows the result of the MODIS dNBRMT approach, while
Fig. 4B details a specific burned area framed in blue in Fig. 4A.
Fig. 4C displays the traditional Landsat dNBR, while Fig. 4D also
depicts the detailed subset. On a coarse scale the MODIS and Land-
sat assessments reveal the same patterns of burn severity, however,
it is trivial that Landsat estimates are characterized by more spatial
detail. This is also visible in Fig. 5. The scatter plot between GeoCBI
and Landsat dNBR estimates is given in Fig. 5A. The linear regres-
sion fit resulted in a coefficient of determination R2 = 0.56. Fig. 5B
presents the scatter plot between downsampled Landsat data and
corresponding dNBRMT estimates for the 150 field-sampled loca-
tions. The vertical bars indicate the standard deviation (sd) of the
Landsat pixels within one MODIS pixel. Although the correlation
between downsampled Landsat dNBR and MODIS dNBRMT esti-
mates is moderately high (R2 = 0.54), it is clear that there exists
considerable variation within one MODIS pixel (sd of Landsat dNBR
up to 0.25).

In Fig. 6 mean dNBRMT (sd) is plotted per land cover type. One
can clearly see that the 1-year integrated change is higher for forests
than for more sparsely vegetated covers. dNBRMT estimates are the
highest for coniferous forest, followed by broadleaved forest. Shrub
land and olive groves have considerably lower dNBRMT estimates.
Fig. 7 examples temporal profiles of eight pixels. These figures
demonstrate that dNBRMT estimates account for both the direct
fire impact and the ability to recover.

5. Discussion

A major advantage of the multi-temporal burn severity
approach is its combination of both the immediate fire impact
and vegetation regrowth. As such, it is more tightly connected to
the definition of burn severity. Key and Benson (2005) stated that

burn severity encloses both first- and second-order fire effects.
The most important first-order effect is the fire’s vegetation con-
sumption, while vegetation regeneration and delayed mortality
are substantial second-order effects. In that respect, Lentile et al.
(2006) specified that burn severity relates to the amount of time

deviation per land cover type.
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ig. 7. Illustration of dNBRMT estimates (shaded area) for coniferous forest (A and
ocation of the pixels is given in Figs. 2 and 4A.

ecessary to return to pre-fire level. As a consequence plots that
xperienced a high fire severity and fast regeneration will result in
imilar dNBRMT outcomes as plots that were only slightly affected
y the fire but with slow recovery. While in some studies it can be

mportant to distinguish between first- and second-order effects,
urn severity incorporates both (Lentile et al., 2006; Keeley, 2009).
he application of an integral has been used to characterize vegeta-
ion productivity (Reed et al., 1994; Heumann et al., 2007). As such,
he integrated change between NBR values of control and burned
ixels, as gauged by the dNBRMT, reflects the change in productiv-

ty due to the fire. Seasonality and recovery processes vary per land
over type (Reed et al., 1994; White et al., 1996). As a result, dNBRMT
stimates are clearly higher for forests than for more sparsely veg-
tated areas (Figs. 6 and 7). Recovery in forests can take several
ecades (Nepstad et al., 1999), whereas shrub species are typified
y a relatively fast recovery (Keeley et al., 2005). The dNBRMT incor-
orates this difference. Moreover, depending on the application and
he ecotype, one could decide to alter the integration period (1 year
n this study).

In corroboration with previous findings (French et al., 2008),
andsat dNBR correlated reasonably well with field data of
everity. The correlation between GeoCBI and Landsat data dif-
ered from previously published outcomes based on the same
ata (Veraverbeke et al., in press-a), mainly because of some
inor changes in satellite preprocessing and the exclusion of ten

nburned field plots. Multi-temporal MODIS burn severity esti-
ates showed a moderate-high correlation with the dNBR of a

raditional bi-temporal Landsat assessment (R2 = 0.54). The slope
f the regression equation (0.77) was considerably lower than one.
n contrast with the 1-year post-fire Landsat assessment, dNBRMT
stimates also incorporate observations from the immediate post-
re period. As a consequence dNBRMT estimates were slightly
igher than the Landsat dNBR. Despite of the coarse scale resem-
lance between Landsat and MODIS data, Landsat data are superior
o reveal spatial detail (Hilker et al., 2009). These data, how-
ver, fail to comprehend the temporal dimension of burn severity.
oreover, the magnitude of change measured with the traditional
andsat dNBR highly depends on assessment timing (Key, 2006;
eraverbeke et al., in press-b). Allen and Sorbel (2008), for example,

ound that initial and extended assessments produced significantly
ifferent information with regards to burn severity for tundra veg-
tation, while the timing of the assessment had no effect for back
rub land (C and D), olive groves (E and F) and broadleaved forest (G and H). The

spruce forest, which was attributed to the rapid tundra recovery.
Verbyla et al. (2008) reported a seasonality effect that resulted
in large dissimilarities in dNBR values for only slightly differing
assessment timings, probably due to a combined effect of senescing
vegetation and changing illumination conditions. Veraverbeke et al.
(2010) illustrated the necessity to correct for illumination effects,
also in a ratio-based NBR analysis, because these effects affected
the performance of the dNBR, even for bi-temporal acquisitions
schemes that only slightly deviated from the ideal anniversary date
scheme. This timing constraint potentially hampers the compari-
son of Landsat dNBR estimates across region and time (Eidenshink
et al., 2007; Verbyla et al., 2008). If the period of the dNBRMT’s inte-
gration remains the same for different fires, the multi-temporal
approach truly has the potential to allow a better comparison of
burn severity either in time or space. Thus, where fine resolution
Landsat studies allow revealing high spatial detail, which is favor-
able for regional studies, their usage is limited due cloud cover
problems (Ju and Roy, 2008) and difficulties in image-to-image nor-
malization (Coppin et al., 2004; Verbyla et al., 2008; Veraverbeke et
al., 2010). Therefore, the high temporal frequency of coarse resolu-
tion imagery can either be a vital complement to traditional Landsat
dNBR mapping of specific fires or an imperative alternative for the
assessment of burn severity at continental to global scales.

6. Conclusions

In this study a multi-temporal method to assess burn severity
of the 2007 Peloponnese (Greece) wildfires has been proposed.
The approach introduces an alternative for traditional Landsat
dNBR mapping, which can be constrained due to cloud cover and
image-to-image normalization difficulties. The method is based
on coarse spatial resolution with high temporal frequency MODIS
imagery. MODIS’s daily MIR and NIR reflectance products were first
composited in 8-day periods and missing values were replaced.
Subsequently, for each burned pixel a unique control pixel has been
retrieved based on time series similarity and spatial context. The
dNBRMT was then calculated as the 1-year post-fire integrated dif-

ference between the NBR of the control and burned pixels, averaged
by the total number of observations. dNBRMT estimates reflect the
change in vegetation productivity caused by the fire. This change
is clearly higher for forests than for shrub lands. By integrating
over time, dNBRMT estimates account for both the direct fire impact
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Verbyla, D., Kasischke, E., Hoy, E., 2008. Seasonal and topographic effects on estimat-
ing fire severity from Landsat TM/ETM+ data. Int. J. Wildland Fire 17, 527–534.
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nd ecosystem responses. As such the dNBRMT is more tightly con-
ected to the definition of burn severity compared to traditional
i-temporal Landsat dNBR mapping. dNBRMT estimates correlated
easonably well with the downsampled Landsat dNBR, which on its
urn showed a moderate-high correlation with GeoCBI field data.
lthough Landsat dNBR is superior for spatial detail in regional scale
tudies, the dNBRMT presents a valuable alternative for burn sever-
ty mapping at a regional to global scale. The approach also has
otential to enhance comparability of different fires across regions
nd time.
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